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J. Phys.: Condens. Matter 3 (1991) 6935-6946. Printed in the UK 

Universal properties of supercooled fluids 

E-0 Carmesin 
Fachbveich Physik, Universitst Branen, 2800 Bremen, Federal Republicof Germany 

Raeived 15 February 1991, in final form 5 June 1991 

Abstract. Supercooled Euids hmsuffidentlyrepulsivepartioles exhibit a universal 
behaviour, which originates from an experimentally unobservable singularity, and 
consists of a combination of power laws with a saturation law. Many experimental 
results are explained and a new correlation length is predicted. 

1. Introduction 

It is well known experimentally that glasses and ‘glass transitions’ exhibit universal 
properties [ I ,  21. Some of these have been explained theoretically by investigating a 
fluid of hard particles [3]. The explanation is based on the identification of a singular- 
ity, which is connected to the Kirkwood instability [4-81. Here the universal properties 
which the singularity yields are investigated. These follow from two main features: 
power laws and a saturation law. The argument goes as follows: near the singularity 
many thermodynamic quantities diverge according to power laws. However since at  
the singularity the pressure would diverge, no physical system can exist at the singu- 
larity. Hence the density p nearly assumes the density p ,  of the singularity, which is 
therefore called the fictive density. In short p saturates. Consequently this saturation 
of p occurs in all quantities which depend on p. The combined effect is shown to ex- 
plain many experiments on glasses, including all those experiments on static properties 
which were discussed in Jade’s  review article [l]. The saturation law also explains 
why the singularity has never been observed experimentally, although it exists for 
most substances. Infinitely many phase transitions occur near the singularity. In the 
classical fluid the Kauzmann paradox [9] allows the entropy of the fluid to become 
smaller than that of the crystal. This can be repaired by quantum corrections. 

2. Model 

Let us consider N particles in a D-dimensional volume V which interact via an 
isotropic repulsive two-particle potential U(r). The corresponding Mayer function 
g(r) [lo, 111 at temperature T has the Fourier transform g ( h ) ,  which has an absolute 
and relative maximum at to, with $(to) > 0. This is typically the case for potentials 
with a relatively hard core especially for hard sphere potentials, but not for Coulomb 
potentials. If the system is cooled, this is done sufficiently rapidly that the system 
remains in the fluid state if possible. 
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3. Classical fluid 

Here the thermodynamic properties will be investigated in terms of the activity y. 
In7 can be written in terms of Mayer cluster diagrams. These can be classified into 
those which are topologically more complicated than loops, and those which are not 
[12, 131. The latter can be summed as a geometric series. Finally Iny is the following 
function of the density p: 

+ diagrams topologically more complicated than loops. (1) 

Since the denominator in this equation vanishes for p = l/$(ko), Iny exhibits a 
singularity at that density. The topologically more complicated diagrams than loops 
can, depending on the explicit choice of the potential U, have the following effects on 
the singularity: 

(i) They can compensate for the singularity, so that Iny is a regular function of 
the density. This case is highly non-generic in the space of U(r) and will not therefore 
be considered in the following. 

(ii) If they do not compensate for the singularity, there are two alternatives: they 
can modify the singularity either quantitatively (this is likely to be the case in three 
dimensions) or qualitatively. The latter would be surprising, since in Yukawa poten- 
tials U(r) computer simulations exhibit just such a singularity in three dimensions and 
at high dimension the topologically more complicated diagrams vanish altogether. 

In this sense the qualitative properties of fluids near p = l/g(ko) can be derived 
from equation (I). The following is an investigation of the singularity. Formally at 
leading order near the singularity 

c(k) = @,) - a(k - k,)'. (2) 

Therefore 

where 

and 

Here the fact that the term proportional to p only contributes near 5 = 0 is taken 
into account by replacing p with pm. The latter denotes the value of the density at the 
singularity for a given temperature. (Technically this is a tricky but correct notation 
which simplifies the procedure for taking derivatives,) Hence the following equations, 
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which describe the thermodynamics near the singularity, can be derived. The pressure 
Pr of the fluid reads 

The chemical potential pr is 

pr/T = Inp+j(k = 0)p+ODp-'I2  - D/21n(MT) (7) 

where M is the m a s  of the particle divided by the square of Planck's constant. The 
compressibility IC, is 

,912, 1 dV 
V d P  51,p2Tj(k0) 

IIr = = 

The free energy per particle fr is 

1- D 2 
f,/T = lnp+ -g(k = 0)p - - ln(MT) - 1 - - Q D ( F ' / ~  - 1). (9) 

2 2 f@O) 

The entropy per particle ur is 

1- D D + 2  1 
2 2 2 

ur = - lnp - -g(k = 0 ) p  + - In(MT) + - 
(10) 

The specific heat per particle er is at k e d  p 

The two-particle correlation function gz(r) reads 

and 

Here JD12-l(kor) is the Bessel function. Thus gz has sharp peaks at almost 
periodic positions, and has infinitely many local maximaand minima. At each distance 
r, the next local maximum, rmax, and minimum, rmin, are well defined. Thus the local 
order parameter 

4 r )  := 1 - gZ(rmin)/dymax) (15) 
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is well defined and decays with increasing distance from one to zero. Since the envelope 
of the Bessel function is approximately 

the local order parameter reads 

where 

Let us define the correlation length as the distance at which q(6) = 1 - l/e, then 
it diverges with the power law 

(19) 
kot W D  2 / ( D - l ) p - I / ( D - 1 ) ,  

These equations contain two extraordinary features: 

9.1. Imversibil i ty 

At  sufficiently small 6, e, becomes negative, thus du,/dT becomes negative. Since at 
large T grows monotonically, U, exhibits a local minimum, at T,,, say. This can 
be explained as follows: In this calculation, all possible configurations of the particles 
have been integrated with their respective weights. At  temperatures below Tmin, the 
total weight of these configurations is too large for one phase, since the entropy must 
decrease with decreasing temperature. Hence the total weight of the configurations 
must be distributed onto sufficiently many phases, so that for all phases and phase 
transitions, the entropy, which is the logarithm of the total weight of the respeo 
tive configurations, decreases with decreasing temperature. Therefore the increase in 
entropy which occurs at temperatures below Tni, is identified as a configurational 
entropy ucconf, which is a lower bound for the logarithm of the number of phases, 
which occur with decreasing temperature. Since these phases need not exhibit any 
symmetry because the system is cooled sufficiently rapidly, the phases are identified 
as glass phases. Thus, the order parameter of such a phase is the mean overlap of an 
actual configuration of particles with a reference configuration of the phase. These 
order parameters are not described by this theory yet, and their investigation remains 
a major challenge. The part of the specific heat which corresponds to uCod will not be 
observed in experiments. The number of phases per particle increases without bounds 
as the singularity is approached. In other words to each phase (metastable or stable) 
there corresponds a reference configuration (a configuration at which there is a local 
maximum of the distribution function in configuration space) just as in the case of 
ferromagnetism, the king model or the king spin glass (thus separate averaging over 
non-ergodic components is necessary). 
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3.2. Kauzmann paradox 

Consider the curve in the temperaturedensity plane, on which dp/dTp-'/' is con- 
stant. In a physically interesting system, the density will not change too much on that 
line at sufficiently low temperature, since the inter-particle distances are then nearly 
constant. This condition requires some potential in addition to the purely repulsive 
one. For the purpose of investigating the singularity, it does not make much difference 
whether this additional potential is an external one of a box, for example, or whether 
it is a slight modification of U(r). In the latter case the potential U(r) exhibits a local 
minimum, at r = ro say. Thus the potential is attractive at r > Po. Here and in the 
following we assume such a modified potential. Hence at sufficiently low temperature, 
the entropy becomes negative and, for arbitrarily small temperature, the entropy can 
become arbitrarily small. On the other hand, the entropy of the crystal is finite. 
This is the Kauzmann paradox. This paradox motivates the investigation of quantum 
corrections. 

4. Semiclassical fluid 

The free energy can be written as an expansion in h. In this expansion, the leading 
correction to the classical free energy per particle reads [I41 

Here (. . .) denotes the average according to the Boltzmann distribution. Let us 
consider the forces Fij = -dU/drdj. For states at which the quantum corrections 
become relevant, the solid-state virial theorem [15] is a suflicient approximation, 

At a crude but sufficient approximation, only the interaction of the immediate 
neighbours contributes significantly, and their mean distance is rij = p-' lD and their 
number is D, thus 

Inserting this into equation (20) yields the general expression for fSm in this equa- 
tion 

P= 
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4.1. Small corrections 
If the corrections are sufficiently small, P = Pr can be inserted into equation (23), 
thus a t  leading order in F, 

(24) 
4 f,, = 7 

where 

This approximation is valid for Pr > Pqm, or 

4.2. Large corrections 
Since from thermodynamics P = pzdf/dp and f = fr + f,,, the general expression 
for f,, aSSumes the form 

2 1 f = ff + 6pZMD2T2 [P2$ + P Z G ]  dP 

Inserting Pr = p2dfr/dp and f - fr = fqm and considering the vicinity of the 
singularity at which Pr TpQDp"'12 yields the differential equation 

with 
A=- QD 

m D  
and 

B =  
~ D T '  

Only the qualitative features of the solution fqm of the preceding differential equa- 
tion will be derived. Consider f,, as a function of 6, while p constant, then 

If Z, -+ CO, the term proportional to A vanishes, and hence fqm + 0. If F + 0, 
the term proportional to A diverges, and hence fqm + 00. In between, fq,($) is a 
monotonically decreasing function. Thus there is a range of sufficiently small ,? in 
which the small corrections are valid. This range will be investigated in the following. 
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4.3. Reparation of the K a u m a n n  pamdor 

The corrected entropy reads 

(34) 

Consider a system at constant pressure and temperature. Then equation (40) 
holds and thus the entropy is together with p = p, = I/G(k,,) 

or 

With (40) di/dT is positive. Hence the function u(T) diverges for T -* 0 as well 
as for T -+ CO. In between it assumes a minimum at Tmin. Furthermore at sufficiently 
low temperature, InT will be dominated by T-3 in the previous equation for u(T). 
Thus at sufficiently low temperature, u(Tmin) > ucvstal(Tmin), and the Kauzmann 
paradox is thus repaired. 

In principle there is still the possibility that at intermediate temperatures the 
entropy of the semiclassical fluid becomes smaller than that of the crystal. For a givGn 
potential U there is always a sufficiently large mass M such that the entropy becomes 
negative at some intermediate temperature. However the entropy cannot become 
arbitrarily small as in the classical fluid. Therefore it would be very surprising if there 
should still be a Kauzmann paradox possible within the semiclassical fluid. 

4.4. Interpretation and ezpen’mental significance of quantum corrections 

The fact provided by the analysis is that near the singularity quantum corrections 
become relevant. Typically in statistical physics quantum effects only occur at rela- 
tively low temperature, whereas here it depends on the material and the experimental 
conditions (e.g. pressure) under consideration, whether or not the singularity with its 
quantum effects occur at relatively high temperatures. 

One might ask whether these quantum effects can be modelled by considering 
one particle in a fixed surrounding or whether it is necessary to model a system of 
several or many particles. The analysis of the free energy suggests that only a system 
of particles can model the quantum corrections. And in particular the existence of 
the many glass phases suggests that slow dynamics is relevant and hence the tunnel 
effect is important and thereby relaxation times decrease (relatively to the respective 
classical relaxation times) and hence more fluctuations can take place in finite time and 
therefore the entropy increases (relatively to the entropy corresponding to a respective 
classical model). 

In addition to this theoretical evidence there is experimental evidence for the 
answer of this question, that in general the quantum corrections near the singularity 
cannot be modelled by considering a single particle with its fixed surroundings. 
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For the case of derphenyl the Kauzmann temperature TK [3] has been measured 
(16, 171 to be approximately 200 K. Let us assume for simplicity that a molecule is in 
a hard box formed by its neighbouring molecules. Then its energy is 

Thus its de Broglie wavelength is X = 0.2042 A. The meansquare root displacement of 
an c-terphenyl molecule at that temperature has been measured [18] to be = 
0.424 A. Thus at 200 K the quantum effects of a one-particle model are relatively 
small, and it turns out that only at T < 100 K is X > and the quantum effects 
are relatively large for a single-particle model. 

Thus from these experiments for derphenyl the quantum effects for a single- 
particle model are relatively small at TK and since the quantum effects are relatively 
large at T, according to this investigation, the quantum effects at the structural glass 
transition for c-terphenyl are due to collective phenomena. Hence this transition has to 
be understood as a macroscopic quantum phenomenon at relatively high temperature. 

4.5. Irreuersibilify 

The discussion of irreversibility remains essentially the same as for the case of the 
classical fluid. 

5. Universal properties 

5.1. Fictive density and lemperature 

In the temperature-density plane, the singularity occurs on the curve defined by = 0. 
The respective temperatures T, and densities p, are called fictive since these points 
cannol be reached experimentally, because on that curve the pressure diverges. At 
these points p, the Kirkwood instability, i.e. the instability of the uniform density dis- 
tribution with respect to infinitesimal density fluctuations, would occur, if they could 
be reached experimentally. Here it has already been shown that near p, the relevant 
physics occurs, i.e. many (mostly metastable phases occur), while p, itself cannot be 
reached. This explains why the Kirkwood instability has never been observed exper- 
imentally, although it should be very universal since repulsive potentials are relevant 
in many substances. This also explains qualitatively why carbon can be transformed 
to diamond at high pressure, namely the system approaches the Kirkwood instabil- 
ity as the pressure increases, and thus the relative stability of any metastable phase 
decreases. Apparently the diamond phase is stable at high pressure. 

These power law divergencies are known from hard sphere systems and other 
systems of repulsive particles 119-211. 

5.2. Coezisting phases 

The number of phases grows without bounds independently of the details of the PO- 
tential. The logarithm of the number of phases is approximately 
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and is thus universal. Since this behaviour of the entropies is the cause for the apparent 
Kauzmann paradox, the Kauzmann paradox is also universal. 

When the Kawmann paradox occurs, quantum corrections become relevant. For 
comparison note that quantum corrections also become relevant when the uncertainty 
relation is violated. This occurs for a system of particles which interact via a Yukawa 
potential below a temperature which diverges like p-5.5 [22]. 

It has been found from experiments on glasses that many coexisting phases exist 
[23]. Furthermore it is known from mode coupling theory [24] that a dynamic insta- 
bility exists at which certain modes have diverging relaxation times. The states which 
are thereby frozen in can be identified with the phases. Here also the number of these 
phases is estimated. 

5.3. Implicated safuration of ihe specific heal 

When the singularity is approached by decreasing temperature, the specific heat de- 
creases due to equation (11) with a power law. Since the configurational entropy does 
not contribute to the specific heat, there is a saturation of this decrease at a lower 
level, when the formation of phases becomes significant. This saturation of c(T) is 
observed experimentally at the glass transition 111. 

5.4. Saiuralion law f o r p  

Consider a system at constant pressure. At high temperature, p sj 1, hence PJT sj 
p + g(k = 0)/2p2, and thus p(T) is a monotonically decreasing function. 

As the temperature approaches T, from above however, p needs to be considered. 
In that case, 

3 T e QDpp-112,  (38) 

From p = 1 - pc(ko) it follows that 

Hence when P = Pf the universal relation at leading order in @ is given by 

From p = 1 - p5(ko) it follows that 

This relationship states that at leading order in 6, p is constant. This saturation 
' of p(T) is observed experimentally at the glass transition [2].  
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5.5. Other implicated saturations 
Consider a system at wnstant pressure. In general all power laws previously derived 
are universal. However other saturations occur due to the saturation of the density 
in all those quantities which depend on the density. These are also universal because 
they occur independently of the details of the potential. 

The following saturations may be derived in detail. For each case we investigate 
the effect of saturation and therefore consider the factor $1' in QD separately. 

(i) The compressibiZily According to equation (8), the compressibility is propor- 
tional to ~ / z l / p 7 / z .  The first factor decreases with a power law when the singularity 
is approached hy decreasing the temperature. The second factor decreases at rei% 
tively high temperature with decreasing temperature, while it saturates at 1/#ka)T/2,  
near the singularity. Altogether the compressibility exhibits a saturatation effect and 
a power law. This saturation of K(T) as well as a decreasing factor of K(T) is observed 
experimentally at the glass transition [2]. 

(ii) The velocity of sound can be expressed as 

For the same reasons as those given earlier, the velocity of sound exhibits an 
increase with a saturation effect, and m increasing power law. This saturation of 
cJT) as well as a decreasing factor of c p ( T )  is observed experimentally at the glass 
transition [I]. 

(iii) Furthermore it is known from experiments [l] that the shear modulus G also 
increases at the glass transition and saturates at a higher value. Since G is the inverse 
of an anisotropic response which corresponds to the isotropic compressibility K ,  it is 
conceivable, that its saturation occurs in an analogous manner. 

So far all stbtic properties of glasses, which were presented by Jackie's review [2] 
article have been explained at least qualitatively. 

(iv) From the earlier derivation it follows that the form of the two-particle cor- 
relation function is the same for any potential at a given dimension. Therefore gz is 
universal near the singularity. 

In addition the power law, by which the correlation length diverges, is universal, 
while the prefactor depends on the potential. Furthermore the saturation law for p,  
equation (40), implies 

This correlation length has not yet been found experimentally to my knowledge. 
Perhaps the reason is that there is no known ordered structure which decays with 
distance according to that correlation length. 

5.6. More quantildive features 

compressibility is given by 
(i) Near the singularity, equation (38) can be inserted into equation (8), thus the 
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Therefore 

dKf - < o  dP 
- > o  d% and dT 

both in agreement with experiments on glasses [2]. 
(ii) Let us consider the thermal expansion coefficient 

1 dL 
L dT 

0 = -- 

where L is the length of the probe. With the previous results 

or 

(45) 

Let us first note that near the singularity 01 depends on the relative change of 
the Mayer function only, and not on collective properties like harmonic oscillations 
or the density, as it does away from the singularity. In this sense this relation is 
universal. The Mayer function itself, however, is non-universal. It is conceivable that 
for physically relevant potentials (d$(k,)/dT)/i(k,) is small, and so is 01. This is 
typical for glasses [2]. 

5.7. Comparison with a model for  Ihe strrrcturai glass transition 

The existence of the decisive singularity [3] has been derived and the singularity is 
represented by equation (2) in a well defined and systematic approximation, A sin- 
gularity of the form of equation (2) has been assumed for a model of the structural 
glass transition [25]. This model [25] on the one hand, as well as with the neglect of 
topologically more complicated diagrams than loops in equation (2) in this analysis 
can, however, be characterized as mean field approximations. Therefore both investi- 
gations exhibit certain important common features like the existence of an extensive 
number of phases and the Kauzmann paradox. 

Here for a class of many-particle systems specified by the respective two-particle 
potentials, the conditions for the existence of the decisive singularity are derived. 
This theoretical result can also be of practical predictive potential. For example, for 
particles interacting with Coulomb forces, the Fourier transform of the Mayer function 
i is proportional to -k-Z and hence there is no such singularity. Since metals mainly 
interact with Coulomb forces, they rarely form glasses as is well known experimentally. 
Furthermore the relevance of quantum corrections due to collective phenomena and at 
relatively high temperature can be derived for this class of many-particle systems. In 
particular the quantum corrections can repair the Kauzmann paradox which remains 
to  be explained in 1251. 
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6. Conclusion 

For quite general sufficiently repulsive isotropic two-particle potentials, the static be- 
haviour of a supercooled fluid is investigated. It is shown that the thermodynamics 
are dominated by a singularity, which is related to the Kirkwood instability. Hence 
universal power laws and a universal saturation law are derived. The combination of 
both explains all experiments on the static quantities of supercooled fluids and glasses 
which were discussed in Jackle’s review article. Furthermore it explains why the singu- 
larity itself cannot be observed experimentally, as well as the Kauzmann paradox and 
its solution by quantum corrections. It implies the existence of many phases near the 
singularity and provides an estimation of their number. A new correlation length, its 
increase and saturation are predicted, which if found experimentally would contribute 
to the understanding of supercooled fluids and glasses. 
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